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Today’s Topics
● Surface representations
● Smooth curves
● Subdivision
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Smooth Curves and Surfaces
● Triangles

● Requires many triangles to represent high-
resolution geometry, but has limited resolution 
in the end

● Smooth curves and surfaces are preferred 
in many applications
● Art, industrial design, mathematics, 

architecture, computer-aided design (CAD), etc
● Even fonts are specified with curves

http://www.flyinmiata.com http://www.acrobatusers.com
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Three Representations of Curves
● Parametric:

● C(t) = (x(t), y(t)), where t is parameter
● E.g., parabola: (t, t2)

●Non-parametric explicit
● y = f(x)
● Its parametric form C(t) = (t, f(t))

● Implicit:
● F(x, y) = 0 
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Rendering Explicit Functions

● Explicit functions are easy to render
● Loop over the independent variables generating vertices 

and normals

● However, the class of surfaces they describe is 
too limited
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Shortcomings of Explicit 
Functions
● Consider the following representations of a plane 

as the following:
● For any values of  A, B, and C, the resulting surface will 

be a plane
● However, not every plane can be specified in this form 

(e.g., the x-z or y-z planes)

● Similarly, we cannot completely describe a sphere 
centered at the origin as a simple function:

CByAxz ++=

222 yxrz −−=
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Implicit Representations
● Many surfaces can be described as implicit 

functions, in which all variables are independent 
and are the “zero-set” of a 3-D function

● This representation treats all dimensions 
equivalently
● As a result, it can describe a wider class of surfaces
● For instance, all planes can be described using an implicit 

function of the form:
● Likewise, we can describe spheres centered at the origin 

implicitly:

)z,y,x(f0 =

0DCzByAx =+++

0rzyx 2222 =−++
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Algebraic Surfaces
● Subclasses of implicit surfaces

● Particularly, those for which f(x,y,z) is polynomial in the 
three independent variables

● It is interesting, because it forms a vector space
● As a result, we can define operations like addition, and 

multiplication by a scalar for them
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Quadrics
● The algebraic surfaces of degree 2, have the 

following form:

● These surfaces are called the “quadrics”
● Include spheres, ellipsoids, paraboliods, disks, and 

cones

● Implicit functions are more powerful than explicit 
functions
● There is no simple procedural way to generate points on 

them

0JIzHyGxFyzExzDxyCzByAx 222 =+++++++++
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Parametric Functions
● Define a general “parameter space” and provide 

separate explicit functions for each variable as a 
function of these parameters

● Parametric functions are mappings from a simple 
parameter space to the surface
● A common example of a parametric mapping is the 

sphere:
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Rendering Parametric Functions
● Parametric functions are easy to render

● Step through the parameter space computing the 
vertices and normals:

● There is also a special class of “polynomial 
parametric functions” of the form:

● Where the degree of the function is m+n, and it has 
3(n+1)(m+1) coefficients
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Surface Design
● We now have a framework for specifying a wide 

range of surfaces
● In the case of polynomial function, we need only provide 

a set of coefficients  Very non-intuitive

● In general, we would prefer to specify a surface 
more directly
● For instance we might want to specify points on the 

surface, or provide other various controls

● To simplify our discussion, we will first consider curves in the 
plane
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Specifying Curves
Control points - a set of points that 

influence the curve’s shape
Interpolating spline - curve passes 

through all control points
Approximating spline - control 

points merely influence shape 
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Piecewise Curve Segments
● Often we will want to represent a curve as a series 

of curves pieced together
● But we will want these curves to fit together reasonably

● Parametric continuity:

● A curve has Ck, or parametric, continuity in the interval t 
∈[a,b], if all derivatives, up through the kth, exist and are 
continuous at all points within the interval
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Parametric Cubic Curves
● Suppose that we want to assure C2 continuity our 

functions
● Then, the functions must be of at least degree 3
● Here’s what a parametric cubic spline function looks like:

● Alternatively, it can be written in matrix form: 
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Solving for Coefficients
The whole story of polynomial splines is deriving 

their coefficients

How?

By satisfying constraints given control points and 
continuity conditions
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An Illustrative Example
● Cubic Hermite splines

● Specified by 2 control points and 2 tangent vectors at the 
curve’s endpoints
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● Expressions for the tangent vectors
● Computed by taking derivatives of the parametric 

function
● These derivatives are also functions of unknown 

coefficients

The Gradient of a Cubic Spline
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Hermite Specification
● Here is the full specification of the Hermite 

constraints given in the form of a matrix equation:
[t3,t2,t, 1]  evaluated at t = 0 [t3, t2,t, 1]  evaluated at t = 1

[3t2,2t,1, 0]  evaluated at t = 0 [3t2,2t,1, 0]  evaluated at t = 1
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Solve for the Hermite 
Coefficients
● Finding the coefficients it is a simple 

matter of algebra
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Spline Basis and Geometry 
Matrices
● In this form, we give special names to each term 

of our spline specification:
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Cubic Hermite Spline Equation
●Now we have a full specification of our 

curve:
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Hermite Spline Demonstration
Discussion: 
● Is a tangent vector

really an intuitive 
control? 

● Piecewise issues: 
● C0 easy 
● C1 reasonable

http://www.sm.luth.se/~peppar/presentations/bibdc961114/misc_applets/ParamCurve/
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Another Way to Think About 
Splines
● The contribution of each geometric factor can be 

considered separately
● This approach gives a so-called blending function

associated with each factor

● Reordering multiplications gives: 
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Hermite Blending Functions

http://www.sm.luth.se/~peppar/presentations/bibdc961114/misc_applets/ParamCurve/
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Bezier Curves
● Cubic Hermite splines present some user 

friendliness problems
● Next we will define a new spline class that has 

more intuitive controls
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Coefficients for Cubic Bezier 
Splines
● The gradients at the control points of a Bezier 

Spline
● Expressed in terms of the adjacent control points: 

● Using such a specification is reasonable, but what 
makes 3 a magic number?
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Here's the Trick!
● Knowing this we can formulate a Bezier spline in 

terms of the Hermite geometry spec

● And substituting gives:
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Basis and Geometry Matrices for 
Bezier Splines

● Now we can compute our spline coefficients given 
a Bezier Specification



30

Bezier Blending Functions
● The justification for Bezier spline basis can only 

be approached by considering its blending 
functions: 

● This family of polynomials (called order-3 
Bernstein polynomials) have the following unique 
properties: 
● They are all positive in the interval [0, 1] 
● Their sum is equal to 1 (Where have we seen this 

before?)
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Plots of Bezier Blending 
Functions

● Every point on the curve 
is an Affine combination 
of the control points
● Since the sum of these 

blending weights is 1

● The weights of this 
combination are all 
positive
● Thus, the curve is also a 

Convex combination of 
the control points! 
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Bezier Demonstration
Discussion: 
● Strange mix of points on and 

off the curve 

● Piecewise issues: 
● C0 easy 
● C1 easy 

http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D/cagd/index.html
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Spline Rendering: Take 1
Step 1: Given a spline specification, compute the 

coefficients by multiplying the spline’s basis 
matrix by the geometry vector

Step 2: Take uniform steps in the parameter space (t 
= 0, 0.1, 0.2, …, 1.0), and generate new points on 
the curve

Step 3: Connect these points with line segments

t=0

t=1
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Spline Rendering: Take 2
● “de Casteljau” Algorithm

● Recursively generate new control points for arbitrary 
fractions of the domain from the initial control points

1. Find midpoints of support
2. Connect with 

new segments
3. Find midpoints 

of new segments
4. Connect with 

new segment
5. Find its 

midpoint
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Subdivision
● This process can be repeated 

recursively
● The resulting scaffolding is a good 

approximation of the actual surface

● Why use subdivision (recursion) 
instead of uniform domain sampling 
(iteration)?
● Stopping conditions can be based on local 

shape properties (curvature)
● Subdivision can be generalized to non-

square domains, in particular to 
triangular

● (Link for more examples)

http://www2.mat.dtu.dk/people/J.Gravesen/cagd/subdiv.html
http://www2.mat.dtu.dk/people/J.Gravesen/cagd/subdiv.html
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Example of Generalized 
Subdivision
Here is a sample of generalized subdivision:

1-level0-levels 2-
levels

3-
levels

4-
levels

5-
levels

Geri, Pixar animation
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Bezier Surfaces
● Introduce two parameters, s and t

● Let Bi,n(s) and Bj,m(t) be the Bernstein basis functions of 
degrees n and m in s and t

● Then, a Bezier surfaces with control points pi,j is 
defined as the follow:

● Requires 4x4 control points for degrees 3 and 3 in s and t
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Demonstration of Bezier 
Surfaces

http://www.mizuno.org/gl/bs/
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