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Color Depths

24 Bits („true color“)      vs. 4 Bits (color table)      vs.  1 Bit
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Color-Cube

For custom digital photography in general 8 Bits for each component: 
Black = (0, 0, 0), White = (255, 255, 255)
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Negatives - Complements to White
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Separation into Components (Red, 
Green, Blue) 
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Colors + Global Transparency, 
„Alpha-Blending“ (1)
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Colors + Global Transparency, 
„Alpha-Blending“ (2)
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Medical Imaging, Varying
Transparency Values

Voxel densities often as 12-Bit-Integers, selecting density-intervals
and rendering e.g. as in the „Visible Human Project“
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Bitplane Encoding

• Each pixel-value is specified by its color components and its transparency
via a fixed number of bits.  
• Each of these bit-positions defines a bit-plane. 
• The whole image is representable as a stack of bi-level images. 
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8-Bit-Grayscale: 
Most Significant Bit-planes
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8-Bit-Grayscale: 
Least Significant Bit-planes
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Words and Intervals

For any alphabet S = {0, 1, …, p-1}    

a word w = a1a2 …an in S* is associated with the half-open interval

[ ∑ ai p-i , ∑ ai p-i  + p-n )

In the p-adic number-system this is denoted by

[0.a1a2 …an, 0.a1a2 …an + 0.00 …1)

E.g. for p = 4  the word w = 103    addresses the half-open interval
[0.103, 0.110) of length 4-3
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Acceptors for Bi-level Images

The acceptance pattern for sequences over {0, 1, 2, 3} of length 2 is

Let A = ({q1}, {0, 1, 2, 3}, M, q1)  be a finite state acceptor with transitions
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2D-Interpretation

Acceptance patterns for automaton A and input-lengths 2 and 8.  
Generation of bi-level images: 
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Automaton Inference

For simple cases a generating automaton can directly be inferred
from the image. „Zooming“ into the quadrants 0, 1 and 2 yields scaled
copies of the complete picture.
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Morton-Order (Z-Order)

Addressing 2k x 2k

pixels in hierarchical
and self-similar way.

Rotations and flips of Z 
are also very common
in practice
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Self-Similar Morton-Order

Self-similarity holds for the traversals of the Morton-Order in a trivial manner:
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Binary Alphabet

Addressing pixels / voxels requires only a binary alphabet „with interleaving of 
the dimensions“:

CAI 2007, Thessaloniki

2-D Bintree-Interpretation

xk-2

yk-2

xk-1

yk-1

xk

yk

Any image (black/white, grayscale, color) can be addressed by a bintree
with interleaving the x- and y-bits of the addresses:
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Bintree Addressing

For any image, a tree can define a corresponding finite 
automaton: In its simplest form each pixel corresponds to an 
accepting state in a DFA, the root is the initial state.
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WFA - Definition

A Weighted Finite Automaton (WFA)  A = (Q, Σ, WΣ, I, F) 
consists of:

Set of states Q = {q1, ..., qn}
Input-alphabet Σ = {0,1,…, p-1}, ({0,1} is sufficient)
Set of weight-matrices WΣ = {W0, W1, ...},  where Wi ∈ IRn x n

Initial distribution (row vector)       I  ∈ IRn

Final distribution (column vector)  F ∈ IRn

The image attached to the input-sequence w = i1 i2 ... it („the address“) is
computed by A as: 

fA(w) = I • Wi1 • Wi2 • . . . • Wit • F
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WFA - Example

Set of states Q  = {q1, q2 , q3, q4} 
Set of input-symbols Σ = {0, 1}
Transition-matrices W = {M0, M1} 
Initial distribution I   = (0, 0, 0, 1) 
Final distribution F  = (1, 0.5, 0.5, 0.25)T
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WFA - Example

Graph for weight-matrices and grayscale image 
of the computed function x • y   for x, y ∈ [0, 1) 
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WFA – Example, Subautomata

The WFA for x • y contains the subautomata for the linear slopes
in y and x and the constant 1.
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WFA – Polynomials

pm(x) = xm, m ≥ 1. Let bi ∈ {0,1} and 

x1 = 0.b1 b2 b3 ... bt, x2 = 0.b2 b3 ...  bt,

For b1 = 0:

For b1 = 1:
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WFA - Polynomials

WFA can represent polynomials in a very economical way.

Any polynomial of degree m can be computed by some WFA with m+1 
states ("Line-Automata")

Polynomials are the only smooth functions that WFA can generate exactly
for arbitrary resolution. (Culik, Karhumäki, Kari, Steinby, Droste)

Even the square-root function can only be approximated well, (Karhumäki, 
Terlutte, et. al.)
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WFA Inference Problem

For a given function (a k-dimensional grid of real-valued intensities) find a 
WFA which approximates this function well, and which can be stored in 
a small number of bytes. 

Efficient heuristic implemented by Culik and Kari.
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Coding Decisions in the Bintree

At each inner node recursively check, whether to 
• approximate the current sub-image by a linear combination or
• subdivide it further
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Coding Decisions in the Bintree

Choosing a linear combination:



CAI 2007, Thessaloniki

Cost-Function

A cost-function compares the locally generated error and the storage space
needed for the current approximation and thus checks the build-up of 
linear combinations in each step
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Expl. Bintree Decomposition
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JPEG Baseline vs. WFA for Low-
Bitrates
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JPEG 2000 vs. WFA

Testimage „Cafe“, (detail) 390 x 280 x 8bpp: 

original,                          JPEG 2000,                   WFA 
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WFA for Cartoon-like Images

• Separate all colors into bit-planes. 
• Reconstruct by painting layer over
layer.
• „Don‘t care“ values (in gray) are those
which will be repainted later.
• Replace addition and multiplication in 
linear combinations of WFAs by Boolean
operators. In experiments XOR showed
best performance. 
• In the cost-function count the number of 
wrong pixels to control error-rate vs. file-
size. 
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WFAs and Videosequences

Exploiting temporal redundancies similar to MPEG-x, ….
Different characteristics of frame-sequences:
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Motion Estimation in Fast Actions, 
„Head and Shoulder“ Sequences
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MWFA-Image-Partitioning and 
Motion-Vectors
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Motivations for Extending WFA

In many practical applications there are finite higher dimensional grids for
space, time, color-space, …

To display e.g. a square-root function is not really harder than to draw a 
square-function on the screen

There are other types of self-similarities not covered by WFA 
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Parametric WFA (PWFA)

Initial distribution Weight matrices Final distribution
matrix I Mi1 Mi2 … Mit F

PWFA generalize WFA by replacing the initial distribution vector by a 
matrix. Now a d-dimensional vector of real values is computed for
arbitrary input sequences w = i1 i2 … it .

d

A point x belongs to the result-set S(A) defined by a PWFA A, if there are
infinitely many w s.t. x = fA(w) or the are points fA(w) arbitrarily close to x.
The resulting d-dimensional vectors x are interpreted as relations, 
e.g. for d=3:   bi-level in 3D or grayscale in 2D 
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PWFA over Unary Alphabet

First 50      and         1000 points:

Rotations by an irrational angle e.g. cos -1(0.8) applied to the
final distribution point (1, 0)  yield the points of the unit circle.

S(A) = {(cos(t), sin(t))  | t ∈ IR}
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Polynomial Curves

For (t2 - t3, t – t2) , 0 ≤ t ≤ 1, a PWFA with 4 states can compute the 2D-curve-
segment:

Any d-dimensional curve with parametric representation by d polynomials
of maximal degree m can be computed by a PWFA with m+1 states. 
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Segments and Splines

Expl.: Piecewise combination of parabola-chunks
(9 states PWFA):
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Fractal Compression

Exploiting self-similarities in the pictures is comparable to dictionary-
methods in text-compression in that „a new part of a picture is described
by one or more references to previously coded parts“.
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Iterated Function Systems (IFS)

Affine Transformations in IRm form the basis for IFS.

In IR2 these are just:

Thus, affine transformations can contain scaling, rotation and translation.

A transformation f : X X is „contractive“, if there is an s such that

0 ≤ s < 1 and  d(f(x), f(y)) ≤ s d(x, y) for all x, y in X.

IFS are defined via sets of contractive affine transformations.

CAI 2007, Thessaloniki

Affine Transformations for „Fern“

Four affine transformations for: upper part, new left and right leaf, new part of 
stem
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PWFA-Simulation of 
Iterated Function Systems

Any 2D IFS with k contractive affine maps can be simulated by a 
PWFA with 3 states and k labels.     Expl. „Dragon“:
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Spline Surfaces

E.g. the Bezier spline surfaces (or patches) are constructed of two Bezier 
curves
The control points now make a control polyhedron of the surface.
Moving the control points of one Bezier curve along a set of Bezier curves
to define a surface
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PWFA Spline Patches and Textures

CAI 2007, Thessaloniki

Spheres and Control Points
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Spheres and Textures
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Open Problems

Pure WFA-encoding of video-clips and volume-data

WFA: Encoding efficiency: „space for time“

Inference heuristics for PWFA or for PWFA-subfamilies

Applications of PWFA in „augmented reality“

Efficiency for the representation of 3D-spline-patches 

…..
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